Perception of Urban Trees

 in Hong KongK.C. Chau \& S.N. Tsui

Department of Geography \& Resource Management, CUHK
13.12.2008

The problems

1. What are people's preferences of different tree attributes, such as tree form, branching habits, flowers and color, foliage, fruits etc?
2. Is people's preference of trees based on the composite image or the summative effects of individual tree attributes?

Objectives of study

- To understand park users' perception of different tree attributes
- To investigate whether park users perceive a tree from its composite image or summative effects of the different attributes
- To identify some guidelines for the selection of tree species suitable for urban planting

Methodology

- Questionnaire survey (n=200); 7-value scale, 1 being most preferred and 7 least preferred
- Pilot test of questionnaire \& refinement
- Statistical Package for Social Science (SPSS)
- One-Way ANOVA (group means of ranking by sex, age, education level, employment, residence in rural area, environmental training \& religion)
- Chi-square test (preference between 2 attributes)
- Scheffe test (differences between age groups \& education levels)

Results

- Total: 200 respondents (Male 53; Female 147)
- 183 HK residents

Age

17 mainlanders/Taiwanese

Tree forms

	Spreading	Columnar	Globe	Fan	Oval	Conical	Palm
Current study	2.20	5.11	2.56	3.60	3.67	4.84	6.03
 Summit (1996)	2.18	5.26	2.79	2.93	3.71	3.71	NA

- Stronger preference for spreading and globular canopy than other tree forms ($p<0.05$)
- Preference for palm is lowest

Branching habits

Branching habits	Ranking
Weeping	2.04
Ascending	2.21
Drooping	2.55
Horizontal	3.21

- In descending order of preference Weeping > ascending > drooping > horizontal
- Yet, difference is only significant by age, education level, employment \& religion

Leaf shape

Leaf shape	Ranking
Oval	2.77
Elliptical	3.24
Heart	3.40
Cordate	3.78
Obcordate	4.69
Obovate	5.06
Linear	6.05
Needle	7.02

- Oval>elliptical>heart>cordate> obcordate>obovate>linear>needle ($\mathrm{p}<0.05$)
- Linear and needle leaves are least preferred

Foliage color

Foliage color
Preference for mottled color not different from uniform color ($p>0.05$)

Seasonal change of color Seasonal change of color $>$ no seasonal change of color ($\mathrm{p}<0.05$)

Flowering characteristics

Flowering trees
Flowering trees $>$ trees
without flowers ($\mathrm{p}<0.05$)
Size of flowers
No significant difference in preference between trees with conspicuous flowers \& inconspicuous flowers ($p>0.05$)

Color of flowers

- The older respondents show a higher preference for red flowers ($p<0.05$)
- Preference for white flowers is higher in young age groups than old age groups $(p<0.05)$

Red	Orange	Pink	Yellow	White	Blue	Purple	
<20	4.56	5.06	1.44	4.63	2.06	4.81	5.44
$21-30$	4.15	5.19	3.67	3.93	2.70	4.63	3.74
$31-40$	2.44	3.69	3.06	2.56	4.69	6.17	5.40
$41-50$	2.47	3.42	3.35	4.88	5.42	4.95	3.51
$51-60$	1.64	2.92	3.22	4.33	5.67	5.42	4.81
60	2.33	4.43	2.70	2.73	6.20	5.30	4.30

Growth habits and scent

Deciduous vs. evergreen Evergreen trees > deciduous trees ($p<0.05$)

Fruit-bearing vs. non fruit-
bearing
Fruit-bearing trees $>$ non fruitbearing trees $(p<0.05)$

Trees with scent
Scented trees $>$ Non-scented trees ($\mathrm{p}<0.05$)

Species selection (natives vs. exotics)

Species selection

- Native species preferred to exotic species regardless of respondents' background ($p<0.05$)

Species selection (natives vs. exotics)

	Native	Exotic	No preference	Cannot distinguish
Respondents without environmental training	36 (22.5%)	13 (8.1%)	$51.7 \%)$	$\mathbf{(3 7 . 9 \%)}$
Respondents with environmental training	(69.2%)	(0%)	$\mathbf{(3 0 . 8 \%)}$	(0%)

- Respondents with environmental training show a significantly higher preference for native species than exotic species

Wildlife attraction

- Attractiveness to wildlife > non-attractiveness to wildlife ($p<0.05$)
- Preference for wildlife attraction is significantly higher among respondents with higher education levels \& environmental training ($p<0.05$)

Trees with cultural values

- Higher preference for trees with cultural values than without, except the sex group ($p<0.05$)
- Respondents with higher education levels, environmental training \& experience of residence in rural area are more supportive of trees with cultural values ($p<0.05$)

Top 5 trees with cultural values (107/200 able to name specific trees)

- Ficus microcarpa (34): Wishing tree, aerial root
- Bauhinia blakeana (31): HK's city flower
- Bombax ceiba (15): Hero tree, kapok, flower in "five-flower tea"
- Cinnamomum camphora (12): furniture making, ointment, insect repellent
- Aquilaria sinensis (5): incense, origin of Hong Kong's name

Composite image of 24 trees

- Respondents look at 24 tree photos (5R)
- Choose 3 most-liked trees, assign scores of 3 ($1^{\text {st }}$ tree), $2\left(2^{\text {nd }}\right.$ tree) \& 1 ($3^{\text {rd }}$ tree) in descending order of preference
- Then choose 3 most-disliked trees, assign scores of -3 ($1^{\text {st }}$ tree $),-2$ ($2^{\text {nd }}$ tree) $\&-1$ ($3^{\text {rd }}$ tree)
- Add up total scores of each tree
- Trees with higher scores are treated as more preferred by respondents
- Rank tree in descending order of preference

Tree preference ranking according to composite image

Rank	Tree	Score	Rank	Tree	Score
1	Bombax ceiba	277	13	Melaleuca quinquenervia	-10
2	Delonix regia	263	14	Thevetia peruviana	-13
3	Bauhinia blakeana	139	15	Ravenala madagascariensis	-30
4	Ficus microcarpa	118	16	Grevillea robusta	-42
5	Salix babylonica	74	17	Acacia confusa	-45
6	Juniperus chinensis	50	18	Araucaria heterophylla	-45
7	Aleurites moluccana	26	19	Caryota ochlandra	-51
8	Spathodea campanulata	15	20	Archontophoenix alexandrae	-68
9	Hibiscus tiliaceus	13	21	Livistona chinensis	-88
10	Albizia lebbeck	9	22	Casuarina equisetifolia	-124
11	Cassia surrattenis	4	23	Ailanthus fordii	-161
12	Crateva unilocularis	-8	24	Phoenix roebelenii	-303

Summative image of 24 trees

- Based on people's preference of 11 tree attributes
- Each tree attribute was ranked (1, 2, 3 ...in decreasing order of preference) for all the 24 species
- Add up the total scores for each species
- The lower the total score, the more likely it is close to an "ideal" tree
- Rank "ideal" tree in descending order of preference

Summative image of 24 trees

Rank	Tree	Score	Rank	Tree	Score
8	Bombax ceiba	20	15	Melaleuca quinquenervia	24
2	Delonix regia	17	2	Crateva unilocularis	17
1	Bauhinia blakeana	16	8	Ravenala madagascariensis	20
2	Ficus microcarpa	17	13	Acacia confusa	23
18	Salix babylonica	25	13	Grevillea robusta	23
21	Juniperus chinensis	27	24	Araucaria heterophylla	34
15	Aleurites moluccana	24	15	Caryota ochlandra	24
2	Spathodea campanulata	17	22	Archontophoenix alexandrae	29
6	Hibiscus tiliaceus	18	19	Livistona chinensis	26
8	Albizia lebbeck	20	19	Casuarina equisetifolia	26
7	Cassia surrattenis	19	12	Ailanthus fordii	29
8	Thevetia peruviana	20	22	Phoenix roebelenii	29

Composite image vs. summative image

Rank *	Tree	Rank $^{\#}$	Rank *	Tree	Rank $^{\#}$
$\mathbf{1}$	Bombax ceiba	8	13	Melaleuca quinquenervia	15
2	Delonix regia	2	14	Thevetia peruviana	8
3	Bauhinia blakeana	1	15	Ravenala madagascariensis	8
4	Ficus microcarpa	2	16	Grevillea robusta	13
5	Salix babylonica	18	17	Acacia confusa	13
6	Juniperus chinensis	21	18	Araucaria heterophylla	24
7	Aleurites moluccana	15	19	Caryota ochlandra	15
8	Spathodea campanulata	2	20	Archontophoenix alexandrae	22
9	Hibiscus tiliaceus	6	21	Livistona chinensis	19
10	Albizia lebbeck	8	22	Casuarina equisetifolia	19
11	Cassia surrattenis	7	23	Ailanthus fordii	12
12	Crateva unilocularis	2	24	Phoenix roebelenii	22

[^0]
Conclusions

1. People have different perception of tree attributes; and significant differences were found in tree form, leaf shape, foliage color, flowering habit and color, growth habit, fruiting habit, scent, and ecological and cultural values.
2. The perception of certain tree attributes is specifically affected by respondents' age (flower color); education level, rural residence experience and environmental training (native species, wildlife attraction \& trees with cultural values).
3. Perception of urban trees is built on the composite effect rather than additive effect of the species.
4. People's attention seems to be captured by the dominating and conspicuous features of a tree, e.g. spreading tree canopy and showy warm-colored flowers

Implications of study

- Ideal urban trees should have/be:
- spreading to globular canopy
- oval to elliptical leaves
- seasonal foliage color
- showy flowers with warm colors
- evergreen, fruit-bearing \& scented
- native species able to attract wildlife
- cultural values
- Palm is least welcome by respondents; so are pioneer species (e.g. Acacia confusa) and species with needles \& sparse crown (e.g. Casuarina equisetifolia)
- Trees with red \& pink flowers in residential areas with elderly people; trees with white flowers are more suitable in CBD, shopping malls, children's playground, school area \& sports ground etc

Thank You

[^0]: Ranking: * Composite image; \# Summative image

